Abstract

Here we present our studies on the behavior of collapsed polymer chains in elongational flow fields. In particular, we present scaling and hydrodynamic simulation results on the conformation and dynamics of these macromolecules. In the noncollapsed state, we verify via our simulations that there is a smooth transition from a coil to a stretched conformation. The introduction of self-interactions or nonsolvent effects in a polymer, however, suppresses this transition up to a well-defined threshold flow rate e* at which the chain undergoes an immediate and irreversible transition to a stretched conformation. We characterize this behavior under both freely draining and hydrodynamic interacting assumptions and develop scaling arguments to describe the globule−stretch transition in a variety of regimes. The unraveling dynamics and topologies are characterized with relation to these mechanisms, and the elongational viscosity of dilute solutions of collapsed chains is also investigated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.