Abstract

We present a study of the globular cluster (GC) systems of four early-type poststarburst galaxies using deep g- and I-band images from the Advanced Camera for Surveys aboard the Hubble Space Telescope. All the galaxies feature shells distributed around their main bodies and are thus likely merger remnants. The color distribution of the GCs in all four galaxies shows a broad peak centered on g − I ≈ 1.4, while PGC 6240 and PGC 42871 show a significant number of GCs with g − I ≈ 1.0. The latter GCs are interpreted as being of age ∼500 Myr and likely having been formed in the merger. The color of the redder peak is consistent with that expected for an old metal-poor population that is very commonly found around normal galaxies. However, all galaxies except PGC 10922 contain several GCs that are significantly brighter than the maximum luminosity expected of a single old metal-poor population. To test for multiple-age populations of overlapping g − I color, we model the luminosity functions of the GCs as composites of an old metal-poor subpopulation with a range of plausible specific frequencies and an intermediate-age subpopulation of solar metallicity. We find that three of the four sample galaxies show evidence for the presence of an intermediate-age (∼1 Gyr) GC population, in addition to the old metal-poor GC population seen in normal early-type galaxies. None of the galaxies show a significant population of clusters consistent with an old, metal-rich red cluster population that is typically seen in early-type galaxies. The presence of a substantial number of intermediate-age clusters and the absence of old, metal-rich clusters indicate that the progenitor galaxies which formed the resulting shell galaxy were gas rich and did not host significant bulges. Late-type spirals seem to be the most plausible progenitors. These results lend credence to the "merger scenario" in which the red, metal-rich GCs observed in normal ellipticals are formed during a dissipative merger event that also forms the elliptical itself.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call