Abstract
We investigate a scenario in which feedback from black-hole X-ray binaries (BHXBs) sometimes begins inside young star clusters before strong supernova feedback. Those BHXBs could reduce the gas fraction inside embedded young clusters whilst maintaining virial equilibrium, which may help globular clusters (GCs) to stay bound when supernova-driven gas ejection subsequently occurs. Adopting a simple toy model with parameters guided by BHXB population models, we produce GC formation efficiencies consistent with empirically-inferred values. The metallicity dependence of BHXB formation could naturally explain why GC formation efficiency is higher at lower metallicity. For reasonable assumptions about that metallicity dependence, our toy model can produce a GC metallicity bimodality in some galaxies without a bimodality in the field-star metallicity distribution.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.