Abstract

Globin-like mesoporous CeO2 has been constructed by using a CO-assisted synthetic approach based on hydroxide carbonate precursors, in which CO plays a key role in the formation of the globin-like mesoporous precursors as the carbon source because of its preferential adsorption on Ce3+ under the hydrothermal conditions. The formation mechanism and the thermal transformation process from globin-like mesoporous CeCO3OH to CeO2 have been investigated by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, BET surface area measurements, thermal analysis, Fourier transform infrared spectroscopy, ultraviolet-visible spectroscopy and X-ray photoelectron spectroscopy. Rod-like building blocks interconnected by nanoparticles circle around to form each globin-like CeO2 spheres, leading to the formation of a mesoporous structure. The globin-like mesoporous CeO2 shows much better performance in CO catalytic oxidation than ordinary CeO2 nanoparticles obtained by directly calcining cerium nitrate. Moreover, the globin-like mesoporous CeO2 can act as an ideal matrix for supported catalysts. Metallic Au particles can be well dispersed in the globin-like CeO2 matrix to form Au/CeO2 supported catalysts, which exhibit excellent activity for CO oxidation at room temperature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.