Abstract
The authors discuss the development of a coding system for image transmission based on block-transform coding and vector quantization. Moreover, a classification of the image blocks is performed in the spatial domain. An architecture incorporating both multilayered perceptron and self-organizing feature map neural networks and a block classification is considered to realize the image coding scheme. A framework is proposed to globally train the whole image coding system. The achieved results confirm the merits of such an image coding scheme. The neural network integration is performed with a single learning phase, allowing faster training and better performance of the image coding system. >
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.