Abstract
This paper is concerned with globally optimal sequential and distributed fusion estimation algorithms in the linear minimum variance (LMV) sense for multi-sensor systems with cross-correlated noises, where the measurement noises from different sensors are cross-correlated with each other at the same time step and correlated with the system noise at the previous time step. First, a globally optimal sequential fusion filter is proposed by considering the estimators for measurement noises. The equivalence on estimation accuracy of the proposed sequential fusion filter and centralized fusion filter is proven. It has reduced computational cost since it avoids the measurement augmentation. Then, a distributed fusion filter is also proposed by considering the prior fusion estimator and feedback from the fusion center. Under the condition that local gain matrices are full column rank, the proposed distributed fusion filter has the same estimation accuracy as the centralized fusion filter, that is, it also has global optimality. Their equivalence on estimation accuracy is proven. Stability and steady-state properties of the proposed algorithms are analyzed. A sufficient condition for the existence of steady-state filters is given. Finally, simulation results for a target tracking system show the effectiveness of the proposed algorithms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.