Abstract

A computational approach is developed for designing a globally optimal controller which is robust to time-varying nonlinear perturbations in the plant. This controller design problem is formulated as an optimization with bilinear matrix inequality (BMI) constraints, and is solved to optimality by a branch and bound algorithm. The algorithm is applied to a reactive ion etcher, and gives superior performance while providing robustness to nonlinear plant/model mismatch. To the authors' knowledge, the corresponding optimization problem is the largest BMI control problem ever solved.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.