Abstract
Estimating the 6-DoF pose of a camera from a single image relative to a 3D point-set is an important task for many computer vision applications. Perspective-n-point solvers are routinely used for camera pose estimation, but are contingent on the provision of good quality 2D-3D correspondences. However, finding cross-modality correspondences between 2D image points and a 3D point-set is non-trivial, particularly when only geometric information is known. Existing approaches to the simultaneous pose and correspondence problem use local optimisation, and are therefore unlikely to find the optimal solution without a good pose initialisation, or introduce restrictive assumptions. Since a large proportion of outliers and many local optima are common for this problem, we instead propose a robust and globally-optimal inlier set maximisation approach that jointly estimates the optimal camera pose and correspondences. Our approach employs branch-and-bound to search the 6D space of camera poses, guaranteeing global optimality without requiring a pose prior. The geometry of SE(3) is used to find novel upper and lower bounds on the number of inliers and local optimisation is integrated to accelerate convergence. The algorithm outperforms existing approaches on challenging synthetic and real datasets, reliably finding the global optimum, with a GPU implementation greatly reducing runtime.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Pattern Analysis and Machine Intelligence
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.