Abstract
The conjugate gradient method is a useful and powerful approach for solving large-scale minimization problems. In this paper, a new nonlinear conjugate gradient method is proposed for large-scale unconstrained optimization. This method include the already existing two practical nonlinear conjugate gradient methods, to combine the nice global convergence properties of Fletcher-Reeves method (abbreviated FR) and the good numerical performances of the Polak–Ribiere–Polyak method (abbreviated PRP), which produces a descent search direction at every iteration and converges globally provided that the line search satisfies the Wolfe conditions. Our numerical results show that of the new method is very efficient for the given test problems. In addition we will study the methods related to the new nonlinear conjugate gradient method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.