Abstract
AbstractWe present a method that, given a constraint model, suggests global constraints to replace parts of it. This helps non-expert users to write higher-level models that are easier to reason about and may result in better solving performance. Our method exploits the structure of the model by considering combinations of the constraints, collections of variables, parameters and loops already present in the model, as well as parameter data from several data files. We assign a score to a candidate global constraint by comparing a sample of its solution space with that of the part of the model it is intended to replace. The top-scoring global constraints are presented to the user through an interactive display, which shows how they could be incorporated into the model. The MiniZinc Globalizer, our implementation of the method for the MiniZinc modelling language, is available on the web.KeywordsGlobal ConstraintConstraint ModelProgressive PartySymmetry Breaking ConstraintAlldifferent ConstraintThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.