Abstract
AbstractAn irreducible supercuspidal representation π of G = GL(n, F), where F is a nonarchimedean local field of characteristic zero, is said to be “distinguished” by a subgroup H of G and a quasicharacter χ of H if HomH(π, χ) ≠ 0. There is a suitable global analogue of this notion for an irreducible, automorphic, cuspidal representation associated to GL(n). Under certain general hypotheses, it is shown in this paper that every distinguished, irreducible, supercuspidal representation may be realized as a local component of a distinguished, irreducible automorphic, cuspidal representation. Applications to the theory of distinguished supercuspidal representations are provided.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.