Abstract
A global potential energy surface (PES) for the electronic ground state of Li2H system is constructed over a large configuration space. About 30 000 ab initio energy points have been calculated by MRCI-F12 method with aug-cc-pVTZ basis set. The neural network method is applied to fit the PES and the root mean square error of the current PES is only 1.296 meV. The reaction dynamics of the title reaction has been carried out by employing time-dependent wave packet approach with second order split operator on the new PES. The reaction probability, integral cross section and thermal rate constant are obtained from the dynamics calculation. In most of the collision energy regions, the integral cross sections are in well agreement with the results reported by Gao et al. The rate constant calculated from the new PES increases in the temperature range of present investigation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.