Abstract

In many regions of the world, fires are an important and highly variable source of air pollutant emissions, and they thus constitute a significant if not dominant factor controlling the interannual variability of the atmospheric composition. This paper describes the 41‐year inventory of vegetation fire emissions constructed for the Reanalysis of the Tropospheric chemical composition over the past 40 years project (RETRO), a global modeling study to investigate the trends and variability of tropospheric ozone and other air pollutants over the past decades. It is the first attempt to construct a global emissions data set with monthly time resolution over such a long period. The inventory is based on a literature review, on estimates from different satellite products, and on a numerical model with a semiphysical approach to simulate fire occurrence and fire spread. Burned areas, carbon consumption, and total carbon release are estimated for 13 continental‐scale regions, including explicit treatment of some major burning events such as Indonesia in 1997 and 1998. Global carbon emissions from this inventory range from 1410 to 3140 Tg C/a with the minimum and maximum occurring in 1974 and 1992, respectively (mean of 2078 Tg C/a). Emissions of other species are also reported (mean CO of 330 Tg/a, NOxof 4.6 Tg N/a, CH2O of 3.9 Tg/a, CH4of 15.4 Tg/a, BC of 2.2 Tg/a, OC of 17.6 Tg/a, SO2of 2.2 Tg/a). The uncertainties of these estimates remain high even for later years where satellite data products are available. Future versions of this inventory may benefit from ongoing analysis of burned areas from satellite data going back to 1982.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call