Abstract

In this paper, we study a hyperbolic version of the Navier–Stokes equations, obtained by using the approximation by relaxation of the Euler system, evolving in a thin strip domain. The formal limit of these equations is a hyperbolic Prandtl type equation, our goal is to prove the existence and uniqueness of a global solution to these equations for analytic initial data in the tangential variable, under a uniform smallness assumption. Then we justify the limit from the anisotropic hyperbolic Navier–Stokes system to the hydrostatic hyperbolic Navier–Stokes system with small analytic data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.