Abstract

In this paper, we study the global well-posedness and global dynamics of a reaction–diffusion HIV infection model with the chemotactic movement of CTLs (Cytotoxic T lymphocytes). We first show the global existence and uniform boundedness for solutions of the system with general functional incidences. Then, for the model with bilinear incidence rate, we discuss the existence conditions of the three equilibria (infection-free, chemokines-extinct, chemokines-acute equilibria) of the model and obtain the conclusion of the local asymptotic stability of these equilibria by analyzing the linearized system at these equilibria. Moreover, by constructing reasonable Lyapunov functionals, we investigate the global stability and attractivity of the equilibria. Applying the Lp−Lq estimate, Young’s inequality, Gagiardo-Nirenberg inequality and the parabolic regularity theorem, we also discuss the convergence rates of the equilibria. Finally, some numerical simulations are conducted to verify the theoretical results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.