Abstract
We deal with an initial boundary value problem of nonhomogeneous Boussinesq equations for magnetohydrodynamics convection in two-dimensional domains. We prove that there is a unique global strong solution. Moreover, we show that the temperature converges exponentially to zero in H1 as time goes to infinity. In particular, the initial data can be arbitrarily large and vacuum is allowed. Our analysis relies on energy method and a lemma of Desjardins (Arch. Rational Mech. Anal. 137:135–158, 1997).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Royal Society of Edinburgh: Section A Mathematics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.