Abstract

A nonlinear time-domain simulation method is presented for the prediction of dynamic global wave loads on a Ro-Ro ship at zero speed in regular oblique waves in an intact and a damaged condition. Numerical computations and model tests have been carried to investigate the structural responses of Ro-Ro ship Dextra to various wave amplitudes at three different wave headings (DTR-4.1-NEW-12.98, DEXTREMEL project BE97-4375, 1998; DTR-4.2-NEW-11.99, DEXTREMEL project BE97-4375, 1999). The results of numerical and experimental investigations for stern quartering waves are reviewed. Comparisons between predictions and measurements for global wave loads at the midship section of the intact and the damaged Ro-Ro ship show that the agreement between the theory and experiment for dynamic horizontal and vertical bending moments is excellent. On the other hand, correlation between the predictions and measurements for dynamic vertical shear force is better than that for dynamic horizontal shear force. Nevertheless, the calculated torsion moment values are higher than the measured values. As the wave amplitude is not small, the positive and negative peaks of global wave loads are no longer equal to each other as found in both the calculations and experiments. The dynamic vertical global wave loads in the damaged condition are larger than that in the intact condition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.