Abstract

Abstract This study analyzes trends in precipitable water (PW) over land and ocean from 1988 to 2011, the PW–surface temperature Ts relationship, and their diurnal asymmetry using homogenized radiosonde data, microwave satellite observations, and ground-based global positioning system (GPS) measurements. It is found that positive PW trends predominate over the globe, with larger magnitudes over ocean than over land. The PW trend is correlated with surface warming spatially over ocean with a pattern correlation coefficient of 0.51. The PW percentage increase rate normalized by Ts expressed as is larger and closer to the rate implied by the Clausius–Clapeyron (C–C) equation over ocean than over land. The 2-hourly GPS PW data show that the PW trend from 1995 to 2011 is larger at night than during daytime. Nighttime PW monthly anomalies correlate positively and significantly with nighttime minimum temperature Tmin at all stations, but this is not true for daytime PW and maximum temperature Tmax. The ratio of relative PW changes with Tmin () is larger and closer to the C–C equation’s implied value of ~7% K−1 than . This suggests that the relationship between PW and Ts at night is a better indicator of the water vapor feedback than that during daytime, when clouds and other factors also influence Ts.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call