Abstract

Estimates of the global warming potential (GWP) of methane rely on the predictions from global chemistry-transport models. These models employ many uncertain input parameters representing the sources and sinks for methane and those for the tropospheric ozone, which is formed as a by-product of the methane sink process. Five thousand quasi-randomly Monte Carlo sampled model runs employing a zonally averaged global model were completed, each with a base case and a pulse case that differed from the base case only in having an additional 149 Tg (1Tg = 109 kg) emission pulse of methane. Each of the five thousand pulse case experiments had a small excess of methane that decayed away throughout the twenty-year model experiment. The radiative forcing consequences of this excess methane, and the excess tropospheric ozone formed from it, were integrated over a 100-year time horizon. The GWP was calculated in each of the five thousand model experiments from the sum of the radiative forcing consequences of methane and tropospheric ozone, by expressing them relative to the radiative forcing consequences of an identical emission pulse of carbon dioxide. The 2-sigma confidence range surrounding the methane atmospheric lifetime estimated in the Monte Carlo analysis was considerably wider than that derived from observations, suggesting that some of the input parameter combinations may have been unrealistic. The rejection of the unrealistic Monte Carlo replicates increased the mean methane GWP and narrowed its 2-sigma confidence interval to 37 ± 10 over a 100-year time horizon for emission pulses of the order of 1 Tg. Multiple linear regression was used to attribute the uncertainty in the output GWPs to each of the 183 uncertain input parameters, which represented emission source sectors, chemical kinetic rate coefficients, dry deposition velocities and biases in temperature and water vapour concentrations. Overall, the only significant contributions to the uncertainty in the methane GWP came from the chemical kinetic parameters representing the CH4 + OH, CH3O2 + HO2, CH3O2 + NO and the terpene + O3 reaction rate coefficients.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.