Abstract

Abstract Many studies of global warming have commonly reported positive warming feedback by water vapor, exhibiting relative humidity in the atmosphere unchanged for different warming conditions. However, this is not self-evident, since water vapor content in the atmosphere may be significantly affected by atmospheric convections, such as cumulus convection, which involve strong vertical motions of air. To find an explanation, global warming experiments were run in this study that included atmospheres at radiative–convective equilibrium with differing amounts of a noncondensable greenhouse gas. The models used were the dynamical convection model (DCM) and kinematic circulation model (KCM). When the noncondensable greenhouse gas is increased in the models, the free atmosphere in both the DCM and KCM show similar increases in air temperature and water vapor content. Changes in temperature and water vapor occur such that the relative humidity remains mostly constant. As Iwasa et al. show, water vapor distrib...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call