Abstract

Fertilizers and pesticides have been widely used in agriculture production, causing polluted soil, water, and atmosphere. This study aims to quantify air emissions from pesticides and fertilizers applied for peanut production in Georgia during selected years (1991, 1999, 2004, 2013, and 2018). Specifically, the oral and dermal potential impacts from pesticide emissions and the global warming potential (GWP) impact from fertilizers to air were investigated. This study followed the ISO 14040 series standards for life cycle assessment (LCA) methodology to assess six active ingredients (AIs) (2,4-DB, Bentazon, Chlorothalonil, Ethalfluralin, Paraquat, and Pendimethalin) and one greenhouse gas (nitrous oxide N2O). Their physical and chemical characteristics and the temporal scales greatly influenced the oral and dermal toxicity impacts. According to the low values obtained for Henry’s law (KH) and vapor pressure (VP), 2,4-dichlorophenoxy butanoic (DB), Pendimethalin, and Chlorothalonil have a higher impact on the continental air scale. The effect factor (EF) from oral exposure was higher in 2,4-DB, Bentazon, and Pendimethalin than dermal exposure, according to the relatively low lethal dose (LD50) for oral exposure, while the EF of Ethalfluralin and Chlorothalonil was the same for oral and dermal exposure according to their similar LD50.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call