Abstract
• In current models, the ecophysiological effects of CO₂ create both woody thickening and terrestrial carbon uptake, as observed now, and forest cover and terrestrial carbon storage increases that took place after the last glacial maximum (LGM). Here, we aimed to assess the realism of modelled vegetation and carbon storage changes between LGM and the pre-industrial Holocene (PIH). • We applied Land Processes and eXchanges (LPX), a dynamic global vegetation model (DGVM), with lowered CO₂ and LGM climate anomalies from the Palaeoclimate Modelling Intercomparison Project (PMIP II), and compared the model results with palaeodata. • Modelled global gross primary production was reduced by 27-36% and carbon storage by 550-694 Pg C compared with PIH. Comparable reductions have been estimated from stable isotopes. The modelled areal reduction of forests is broadly consistent with pollen records. Despite reduced productivity and biomass, tropical forests accounted for a greater proportion of modelled land carbon storage at LGM (28-32%) than at PIH (25%). • The agreement between palaeodata and model results for LGM is consistent with the hypothesis that the ecophysiological effects of CO₂ influence tree-grass competition and vegetation productivity, and suggests that these effects are also at work today.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.