Abstract

The implicit Monte Carlo (IMC) method is an important numerical approximation method of simulating the thermal radiative transfer problems under high temperature condition. However, one problem plaguing the IMC method is that the calculation error distributions of the radiation specific intensities are highly asymmetric in space and time. By theoretical analysis and numerical simulations, we find that the error is affected by the records of track in the tallying mesh. Accordingly, a global variance reduction method for implicit Monte Carlo simulation is developed and the corresponding formulas are derived. This method includes three key techniques: 1) the automated dynamic distribution method for the Monte Carlo simulation source particles; 2) the dynamic weight-window technique and the none-bias weight revise algorithm that is suited to the particle distribution method; 3) the analytical estimation variance reduction method of the radiation specific intensity. In view of the above, a three-dimensional simulation code, named IMC3D, is developed to simulate the thermal radiative transfer phenomena. The typical thermal radiative transport problem, known as Marshak wave, is simulated. The simulation results indicate that the global variance reduction method for implicit Monte Carlo makes the statistical errors much more symmetric in space and time and the maximum of error is controllable, thereby increasing the calculation speed approximately 10 times. The new IMC method and code are used for simulating the radiative transportation in hohlraum of ICF successfully.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call