Abstract
The climatic trends of Wind Speed (WS) and wave height play a key role in wind and wave energy assessments, climate change analyses, and air-sea interactions, among many others. Using ERA5 reanalysis, this study reveals the climatic trends of global oceanic WS and wave height for 1979–2018, including the overall trends, regional and seasonal differences of the trends, with a special focus on the differences and similarities between the trends in wind-sea wave height (Hwind) and swell wave height (Hswell), as well as the contributions of climate indices to WS, Hwind, Hswell and Significant Wave Height (Hs) respectively, by employing linear regression and correlation analysis. The results show an overall global oceanic increase for 1979–2018 in WS (+0.47 cm/s/yr), with increases of +0.13, +0.28 and +0.32 cm/yr in Hwind, Hswell and Hs respectively, and a stronger increasing trend in the Southern Hemisphere than in the Northern Hemisphere. There is good agreement between the spatial distribution of annual and seasonal trends in WS and those of Hwind, as well as between Hswell and Hs. Areas with strong increasing trends of WS and Hwind are mainly located in the tropical South Indian Ocean and tropical Pacific Ocean. Hswell and Hs exhibit significant increases in most global oceans. The months with the broadest and strongest increase in Hswell and Hs are June-July-August (JJA). There is a close relationship among the WS, wave height climatology and the modes of climate variability. The wind has the strongest response to climate indices, followed by the wind-sea, with swell having a minimal response.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.