Abstract

This paper presents a new approach to transient stability control using global transient stability-constrained optimal power flow (TSC-OPF) methods. Its novelty consists in using the single machine equivalent (SIME) method to perform (and improve) two main important functions of global TSC-OPF approaches: first, SIME is used to efficiently perform the power system transient stability analysis; second, SIME determines a stable one machine infinite bus equivalent rotor angular trajectory that is used as the reference stability constraint, at one specific integration step. In this way, the stability constraint is adjusted by SIME, at each iteration of the TSC-OPF method, in order to accurately reflect power system dynamic behavior. The prowess and main characteristics of the proposed approach are shown by numerical examples.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.