Abstract

Diverse microarray and sequencing technologies have been widely used to characterize molecular changes in malignant epithelial cells in salivary neoplasms. Such gene expression studies to identify markers and targets in tumor cells are, however, compromised by the cellular heterogeneity of these tumors and by the difficulties to accrue matching controls representing normal salivary glands. Seventeen samples of primary salivary epithelial-myoepithelial carcinoma along with tissue from six normal major salivary glands were microdissected from paraffin-embedded tissue. Pools of RNA from highly enriched preparations of these cell types were subjected to expression profiling using a whole-transcriptome shotgun sequencing experiment. In parallel, extracted genomic DNA was used for the 50 gene hotspot panel sequenome. KRAS mutations in three patients (18%), NRAS mutations in one patient (6%), but no HRAS, MET, PIK3CA, or BRAF mutations. Using strict and conservative criteria, 220 differentially expressed transcripts were found, with 36% up- and 64% downregulated. The transcripts were annotated using NCBI Entrez Gene, and computationally analyzed with the Ingenuity Pathway Analysis program. From these significantly changed expressions, the analysis identified 26 cancer-related transcripts and 16 transcripts related to mitochondrial dysfunction overlapping with three cancer-related genes. These 220 differentially expressed genes including microRNAs provide here a sufficiently large set to specifically define epithelial-myoepithelial carcinoma and to identify novel and potentially important targets for diagnosis, prognosis, and therapy of this cancer.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call