Abstract

SummaryThis paper presents the design of a robust control law for a class of nonlinear dynamical systems subjected to parametric uncertainty and simultaneous unknown, variable state and input delays. A novel controller is developed, which consists of a filtered tracking error and the integral of previous values of control input where the limits of integration are dependent on the known bound of the input delay. Lyapunov‐Krasovskii functionals–based stability analysis guarantees a global uniformly ultimately bounded tracking result where sufficient conditions on controller gains and maximum allowable delay are derived. The performance and robustness of the controller are evaluated by simulation on a two‐link robot manipulator for different combinations of time‐varying state and input delays.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call