Abstract

Abstract. We report on updated trends using different merged zonal mean total ozone datasets from satellite and ground-based observations for the period from 1979 to 2020. This work is an update of the trends reported in Weber et al. (2018) using the same datasets up to 2016. Merged datasets used in this study include NASA MOD v8.7 and NOAA Cohesive Data (COH) v8.6, both based on data from the series of Solar Backscatter Ultraviolet (SBUV), SBUV-2, and Ozone Mapping and Profiler Suite (OMPS) satellite instruments (1978–present), as well as the Global Ozone Monitoring Experiment (GOME)-type Total Ozone – Essential Climate Variable (GTO-ECV) and GOME-SCIAMACHY-GOME-2 (GSG) merged datasets (both 1995–present), mainly comprising satellite data from GOME, SCIAMACHY, OMI, GOME-2A, GOME-2B, and TROPOMI. The fifth dataset consists of the annual mean zonal mean data from ground-based measurements collected at the World Ozone and Ultraviolet Radiation Data Centre (WOUDC). Trends were determined by applying a multiple linear regression (MLR) to annual mean zonal mean data. The addition of 4 more years consolidated the fact that total ozone is indeed slowly recovering in both hemispheres as a result of phasing out ozone-depleting substances (ODSs) as mandated by the Montreal Protocol. The near-global (60∘ S–60∘ N) ODS-related ozone trend of the median of all datasets after 1995 was 0.4 ± 0.2 (2σ) %/decade, which is roughly a third of the decreasing rate of 1.5 ± 0.6 %/decade from 1978 until 1995. The ratio of decline and increase is nearly identical to that of the EESC (equivalent effective stratospheric chlorine or stratospheric halogen) change rates before and after 1995, confirming the success of the Montreal Protocol. The observed total ozone time series are also in very good agreement with the median of 17 chemistry climate models from CCMI-1 (Chemistry-Climate Model Initiative Phase 1) with current ODS and GHG (greenhouse gas) scenarios (REF-C2 scenario). The positive ODS-related trends in the Northern Hemisphere (NH) after 1995 are only obtained with a sufficient number of terms in the MLR accounting properly for dynamical ozone changes (Brewer–Dobson circulation, Arctic Oscillation (AO), and Antarctic Oscillation (AAO)). A standard MLR (limited to solar, Quasi-Biennial Oscillation (QBO), volcanic, and El Niño–Southern Oscillation (ENSO)) leads to zero trends, showing that the small positive ODS-related trends have been balanced by negative trend contributions from atmospheric dynamics, resulting in nearly constant total ozone levels since 2000.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.