Abstract

Vaccination is the most effective method of preventing the spread of infectious diseases. For many diseases, vaccine-induced immunity is not life long and the duration of immunity is not always fixed. In this paper, we propose an SIVS model taking the waning of vaccine-induced immunity and general nonlinear incidence into consideration. Our analysis shows that the model exhibits global threshold dynamics in the sense that if the basic reproduction number is less than 1, then the disease-free equilibrium is globally asymptotically stable implying the disease dies out; while if the basic reproduction number is larger than 1, then the endemic equilibrium is globally asymptotically stable indicating that the disease persists. This global threshold result indicates that if the vaccination coverage rate is below a critical value, then the disease always persists and only if the vaccination coverage rate is above the critical value, the disease can be eradicated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.