Abstract

Mercury, the Moon, and many large satellites of the major planets have been tidally despun from an initially faster rotation. These bodies probably possessed equatorial bulges which relaxed as they lost their spin. An analysis of the stresses induced in an elastic shell by the relaxation of an equatorial bulge indicates that differential stresses may reach a few kilobars and that the tectonic pattern developed depends mainly upon the shell thickness. In every model studied the azimuthal stress σ ϕϕ is larger (more compressive) than the meridional stress σθθ. For a thin elastic shell (thickness less than one-twentieth of the planet's radius) the zone from the equator to 48° latitude is characterized by strike-slip faulting. Poleward of this, normal faults and graben trending east-west are expected. Thicker elastic shells acquire an equatorial belt of thrust faults with east-west throw and rough north-south trends. These tectonic styles may be modified by a small (0.05-0.1%) radial expansion or contraction. Expansion shifts the polar normal faulting province toward the equator, while contraction shifts the equatorial provinces poleward. These patterns are not substantially altered by plastic yielding of the shell, although the equatorial thrust fault province is suppressed by strike-slip faulting until strike-slip faults occur poleward of 64.8° latitude. We conclude that there are many tectonic patterns consistent with despinning and radial contraction or expansion, but they must all be consistent with σ ϕϕ > σθθ. These results also indicate that the polar regions of a despun planet are of particular interest in deciding whether a given lineament system is due to stresses induced by the relaxation of the planet's equatorial bulge.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call