Abstract

This paper presents new theoretical results on the global synchronization of coupled fractional-order recurrent neural networks. Under the assumptions that the coupled fractional-order recurrent neural networks are sequentially connected in form of a single spanning tree or multiple spanning trees, two sets of sufficient conditions are derived for ascertaining the global synchronization by using the properties of Mittag-Leffler function and stochastic matrices. Compared with existing works, the results herein are applicable for fractional-order systems, which could be viewed as an extension of integer-order ones. Two numerical examples are presented to illustrate the effectiveness and characteristics of the theoretical results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call