Abstract
The microgrid concept represents a promising approach to facilitate the large-scale integration of renewable energy sources. Motivated by this, the problem of global synchronization in droop-controlled microgrids with radial topology is considered. To this end, at first a necessary and sufficient condition for existence of equilibria is established in terms of the droop gains and the network parameters. Then, the local stability properties of the equilibria are characterized. Subsequently, sufficient conditions for almost global synchronization are derived by means of the multivariable cell structure approach recently proposed in Efimov and Schiffer (2019). The latter is an extension of the powerful cell structure principle developed by Leonov and Noldus to nonlinear systems that are periodic with respect to several state variables and possess multiple invariant solutions. The analysis is illustrated via numerical examples.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.