Abstract
In this paper, we establish the global existence and stability of a steady conic shock wave for the symmetrically perturbed supersonic flow past an infinitely long conic body as long as the vertex angle is less than a critical value. The flow is assumed to be polytropic, isentropic and described by a steady potential equation. Based on the delicate asymptotic expansion of the background solution, one can verify that the boundary conditions on the shock and the conic surface satisfy the “dissipative” property. From this property, by use of the reflected characteristics method and the special form of the shock equation, we show that the conic shock attached at the vertex of the cone exists globally in the whole space when the speed of the supersonic coming flow is appropriately large. On the other hand, we remove the smallness restriction on the sharp vertex angle in order to establish the global existence of a shock or a global weak solution, moreover, our proof approach is different from that in [Shuxing Chen, Zhouping Xin, Huicheng Yin, Global shock wave for the supersonic flow past a perturbed cone, Comm. Math. Phys. 228 (2002) 47–84] and [Zhouping Xin, Huicheng Yin, Global multidimensional shock wave for the steady supersonic flow past a three-dimensional curved cone, Anal. Appl. 4 (2) (2006) 101–132].
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.