Abstract
In this paper, we consider global subsonic compressible flows through an infinitely long axisymmetric nozzle. The flow is governed by the steady Euler equations and has boundary conditions on the nozzle walls. Existence and uniqueness of global subsonic solution are established for an infinitely long axisymmetric nozzle, when the variation of Bernoulli's function in the upstream is sufficiently small and the mass flux of the incoming flow is less than some critical value. The results give a strictly mathematical proof to the assertion in Bers (1958) [2]: there exists a critical value of the incoming mass flux such that a global subsonic flow exists uniquely in a nozzle, provided that the incoming mass flux is less than the critical value. The existence of subsonic flow is obtained by the precisely a priori estimates for the elliptic equation of two variables. With the assumptions on the nozzle in the far fields, the asymptotic behavior can be derived by a blow-up argument for the infinitely long nozzle. Finally, we obtain the uniqueness of uniformly subsonic flow by energy estimate and derive the existence of the critical value of incoming mass flux.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.