Abstract

Unstructured regions of RNA molecules require flexibility to accomplish many biological tasks such as conformational switching and protein recognition. Due to its highly charged backbone, the flexibility of single-stranded RNA is influenced by counterions. In this presentation, we continue to explore RNA flexibility using single-stranded nucleic acid homopolymers as a model system [1]. We investigate the role of counterion valence in nucleic acid flexibility using a combination of small-angle X-ray scattering (SAXS) and single-molecule Forster resonance energy transfer (smFRET). We also study how charge-screening of these model systems are affected by mono- and divalent ions in competition. The results imply that various factors can alter the polymeric properties of unstructured nucleic acids, and may be important for tuning RNA conformational dynamics in vivo.Reference: [1] Chen et al. PNAS 2012 109 (3) 799-804

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call