Abstract

The Riemann problem for a two-dimensional nonstrictly hyperbolic system of conservation laws is considered. Without the restriction that each jump of the initial data projects one planar elementary wave, ten topologically distinct solutions are obtained by applying the method of generalized characteristic analysis. Some of these solutions involve the nonclassical waves, i.e., the delta shock wave and the delta contact discontinuity, for which we explicitly give the expressions of their strengths, locations and propagation speeds. Moreover, we demonstrate that the nature of our solutions is identical with that of solutions to the corresponding one-dimensional Cauchy problem, which provides a verification that our construction produces the correct unique global solutions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.