Abstract
This study presents financial network indicators that can be applied to global stock market investment strategies. We propose to design both undirected and directed volatility networks of global stock market based on simple pair-wise correlation and system-wide connectedness of national stock indices using a vector auto-regressive model. We examine the effect and usefulness of network indicators by applying them as inputs for determining strategies via several machine learning approaches (logistic regression, support vector machine, and random forest). Two strategies are constructed considering stock price indices: (1) global stock market prediction strategy and (2) regional allocation strategy for developed market/emerging market. According to the results of the performance analysis, network indicators were proven to be important supplementary indicators in predicting global stock market and regional relative directions (up/down). In particular, these indicators were more effective during market crisis periods. This study is the first attempt to construct strategies for global portfolio management using financial network indicators and to suggest how network indicators can be used in practical fields.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.