Abstract

This paper addresses the triangular formation control problem for a system of three agents under mixed distance and bearing constraints. The main challenge is to find a fully distributed control law for each agent to guarantee the global convergence towards a desired triangular formation. To solve this problem, we invoke the property that a triangle can be uniquely determined by the lengths of its two sides together with the magnitude of the corresponding included angle. Based on this feature, we design a class of control strategies, under which each agent is only responsible for a single control variable, i.e., a distance or an angle, such that the control laws can be implemented in local coordinate frames. The global convergence is shown by analyzing the dynamics of the closed-loop system in its cascade form. Then we discuss some extensions on more general formation shapes and give the quadrilateral formation as an example. Simulation results are provided to validate the effectiveness of the proposed control strategies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.