Abstract

<p>Mathematical modeling and analysis of a crop-pest interacting system helps us to understand the dynamical properties of the system such as stability, bifurcations and chaos. In this article, a predator-prey type mathematical model for pest control using bio-pesticides has been analysed to study the global stability property of the interior equilibrium point. Moreover, the occurrence and orbital stability of Hopf bifurcating limit cycle solutions have been studied using ref30's conditions. Analytical and numerical results show that the interior equilibrium of the pest control model is globally asymptotically stable. Also, Hopf bifurcating occurs when the bifurcation parameter crosses the critical value, and the bifurcating periodic solution is found to be stable.</p>

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.