Abstract

AbstractCoupled arrays of Andronov-Hopf oscillators are investigated. These arrays can be diffusively or repulsively coupled, and can serve as central pattern generator models in animal locomotion and robotics. It is shown that repulsive coupling generates out-of-phase oscillations, while diffusive coupling generates synchronous oscillations. Specifically, symmetric solutions and their corresponding amplitudes are derived, and contraction analysis is used to prove global stability and convergence of oscillations to either symmetric out-of-phase or synchronous states. Next, the two mechanisms are used jointly by coupling multiple arrays. The resulting dynamics is analyzed, in a model inspired by the CPG-motorneuron network that controls the heartbeat of a medicinal leech.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.