Abstract

The global temporal stability of three-dimensional compressible flow about a yawed parabolic body of infinite span is investigated using an iterative eigenvalue technique in combination with direct numerical simulations. The computed global spectrum provides a comprehensive picture of the temporal perturbation dynamics of the flow, and a wide and rich variety of modes has been uncovered for the investigated parameter choices: stable and unstable boundary-layer modes, different types of stable and unstable acoustic modes, and stable wavepacket modes have been found. A parameter study varying the spanwise perturbation wavenumber and the sweep Reynolds number reproduced a preferred spanwise length scale and a critical Reynolds number for a boundary-layer or acoustic instability. Convex leading-edge curvature has been found to have a strongly stabilizing effect on boundary-layer modes but only a weakly stabilizing effect on acoustic modes. Furthermore, for certain parameter choices, the acoustic modes have been found to dominate the boundary-layer modes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.