Abstract

In this paper, an SEIVR epidemic model with generalized incidence and preventive vaccination is considered. First, we formulate the model and obtain its basic properties. Then, we find the equilibrium points of the model, the disease-free and the endemic equilibrium. The stability of disease-free and endemic equilibrium is associated with the basic reproduction number [Formula: see text]. If the basic reproduction number [Formula: see text], the disease-free equilibrium is locally as well as globally asymptotically stable. Moreover, if the basic reproduction number [Formula: see text], the disease is uniformly persistent and the unique endemic equilibrium of the system is locally as well as globally asymptotically stable under certain conditions. Finally, the numerical results justify the analytical results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.