Abstract
In this paper, an SIR model with birth and death on complex networks is analyzed, where infected individuals are divided into m groups according to their infection and contact between human is treated as a scale-free social network. We obtain the basic reproduction number R0 as well as the effects of various immunization schemes. The results indicate that the disease-free equilibrium is locally and globally asymptotically stable in some conditions, otherwise disease-free equilibrium is unstable and exists an unique endemic equilibrium that is globally asymptotically stable. Our theoretical results are confirmed by numerical simulations and a promising way for infectious diseases control is suggested.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Physica A: Statistical Mechanics and its Applications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.