Abstract

This paper considers an epidemic model of a vector-borne disease which has the vectormediated transmission only. The incidence term is of the bilinear mass-action form. It is shown that the global dynamics is completely determined by the basic reproduction number R0. If R0 ≤ 1, the diseasefree equilibrium is globally stable and the disease dies out. If R0 > 1, a unique endemic equilibrium is globally stable in the interior of the feasible region and the disease persists at the endemic equilibrium. Numerical simulations are presented to illustrate the results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.