Abstract
In order to treat the diseases caused by hepatitis C virus (HCV) more efficiently, the concentration of HCV in blood, cells, tissues and the body has attracted widespread attention from related scholars. This paper studies a dynamic dependent HCV model (more specifically, including age structure and treatment methods model) that concludes states of infection-free and infected equilibrium. Through eigenvalue analysis and Volterra integral formula, it proves that $E_0$ is globally asymptotically stable when $\mathcal{R}<1$. After explaining the existence, uniqueness and positive properties of the solution of the system, we have proved the global asymptotic stability of $E^*$ when $\mathcal{R}>1$ by constructing a suitable Lyapunov function. Through the above proofs, it can be concluded that effective treatment measures can significantly reduce the number of HCVs, so many related researchers are aware of the importance of highly efficient nursing methods and are committed to applying relevant methods to practice.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.