Abstract

A four-dimensional delay differential equations (DDEs) model of malaria with standard incidence rate is proposed. By utilizing the limiting system of the model and Lyapunov direct method, the global stability of equilibria of the model is obtained with respect to the basic reproduction number R 0. Specifically, it shows that the disease-free equilibrium E 0 is globally asymptotically stable (GAS) for R 0 < 1, and globally attractive (GA) for R 0 = 1, while the endemic equilibrium E* is GAS and E 0 is unstable for R 0 > 1. Especially, to obtain the global stability of the equilibrium E* for R 0 > 1, the weak persistence of the model is proved by some analysis techniques.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.