Abstract

This paper analyses the dynamics of a non-smooth predator-prey model with refuge effect, where the functional response is taken as Holling I type. To begin with, some preliminaries and the existence of regular, virtual, pseudo-equilibrium and tangent point are established. Then, the stability of trivial equilibrium and predator free equilibrium is discussed. Furthermore, it is shown that the regular equilibrium and the pseudo-equilibrium cannot coexist. Finally, the conclusion is given.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.