Abstract

In this paper, we develop and analyze an SIS epidemic model with a general nonlinear incidence rate, as well as degree-dependent birth and natural death, on heterogeneous networks. We analytically derive the epidemic threshold R0 which completely governs the disease dynamics: when R0 < 1, the disease-free equilibrium is globally asymptotically stable, i.e., the disease will die out; when R0 > 1, the disease is permanent. It is interesting that the threshold value R0 bears no relation to the functional form of the nonlinear incidence rate and degree-dependent birth. Furthermore, by applying an iteration scheme and the theory of cooperative system respectively, we obtain sufficient conditions under which the endemic equilibrium is globally asymptotically stable. Our results improve and generalize some known results. To illustrate the theoretical results, the corresponding numerical simulations are also given.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call