Abstract
In this paper, we investigate a disease transmission model of SIRS type with latent period τ⩾0 and the specific nonmonotone incidence rate, namely, kexp(−dτ)S(t)I(t−τ)1+αI2(t−τ). For the basic reproduction number R0>1, applying monotone iterative techniques, we establish sufficient conditions for the global asymptotic stability of endemic equilibrium of system which become partial answers to the open problem in [Hai-Feng Huo, Zhan-Ping Ma, Dynamics of a delayed epidemic model with non-monotonic incidence rate, Commun. Nonlinear Sci. Numer. Simul. 15 (2010) 459–468]. Moreover, combining both monotone iterative techniques and the Lyapunov functional techniques to an SIR model by perturbation, we derive another type of sufficient conditions for the global asymptotic stability of the endemic equilibrium.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.