Abstract

Vaccination is one of the most effective measures for suppressing the spread of computer virus, and the bilinear incidence rate assumption for the majority of previous models, which is a good first approximation of the general incidence rate, is in disagreement with the reality. In this paper, a new dynamical model with two kinds of generic nonlinear probabilities (incidence rate and vaccination probability) is established. An exhaustive mathematical analysis of this model shows that (a) there are two equilibria, virus-free equilibrium and viral equilibrium, and (b) the virus-free (or viral) equilibrium is globally asymptotically stable when the basic reproduction number is less (or greater) than unity. The analysis of the basic reproduction number is also included. Additionally, some numerical examples are given to illustrate the main results, from which it can be seen that the generic nonlinear vaccination is helpful to strengthen computer security.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.